By: Mike Wall
Published: 08/04/2012 09:18 AM EDT on SPACE.com

If NASA's newest Mars rover doesn't touch down safely Sunday night (Aug. 5), the future of Red Planet exploration could be thrown into serious doubt.

The 1-ton Curiosity rover's main goal is to determine if Mars can, or ever could, support microbial life. But the huge robot is also carrying the hopes and dreams of NASA's venerable Mars program on its back to some extent, so a crash Sunday night could be devastating.

"It could take the entire Mars program down with it," Robert Zubrin, president of the Mars Society, which pushes for human settlement of the Red Planet, told SPACE.com's Leonard David. "It is victory or death."

Big funding cuts

President Barack Obama's 2013 federal budget request, which was released in February, slashes NASA's planetary science program funding from $1.5 billion to $1.2 billion, with further cuts expected in the coming years.

Much of the money will come out of NASA's robotic Mars exploration program, which has enjoyed a string of successes in the past decade. After landing in January 2004, for example, the twin rovers Spirit and Opportunity discovered plenty of evidence that Mars was once warmer and wetter than it is today. And the Phoenix lander found subsurface water ice near the planet's north pole in 2008.

Nevertheless, the White House budget proposal cuts NASA's Mars funding from $587 million this year to $360 million in 2013, and then to just $189 million in 2015. [NASA's 2013 Budget: What Will It Buy?]

As a result, NASA was forced to drop of out the European-led ExoMars mission, which aims to deliver an orbiter and a rover to the Red Planet in 2016 and 2018, respectively. And the agency is fundamentally restructuring and downscaling its Mars program, in an attempt to figure out how to make the most out of every precious dollar.

But NASA planetary science officials still hold out hope for a funding comeback, with the help of Curiosity. They think the rover's discoveries could loosen politicians' pursestrings and reinvigorate the agency's robotic exploration efforts.

"What a tremendous opportunity it is for us," Jim Green, head of NASA's planetary science division, said at a conference in March. "I believe [Curiosity] will open up that new era of discovery that will compel this nation to invest more in planetary science."

Sticking the landing

So a successful landing on Sunday night is of paramount importance to the space agency, officials have said.

Curiosity's touchdown "could arguably be the most important event — most significant event — in the history of planetary exploration," Doug McCuistion, director of NASA's Mars Exploration Program, said last month.

But success is not a given. Landing a robot on another planet is never an easy task, and Curiosity's touchdown will perhaps involve more hand-wringing than usual.

Because it's so heavy, engineers had to devise an entirely new landing method for the rover. A rocket-powered sky crane will lower Curiosity to the Martian surface on cables, then fly off to intentionally crash-land a short distance away. Such a maneuver has never before been tried on another world.

If success over the course of the mission could bring great dividends to NASA's Mars program, then failure Sunday night could have a chilling effect. [How Curiosity's Nail-Biting Landing Works (Pictures)]

"I think if we are fatal on landing, that will have a very negative influence," said Caltech's John Grotzinger, lead scientist for Curiosity's $2.5 billion mission, which is officially called the Mars Science Laboratory (MSL).

"It's going to force people to look back and ask if it's possible to achieve these very complex, more demanding missions from a technological perspective," Grotzinger told SPACE.com. "How can you talk about sample-return if you can't do MSL first?"

Keeping the program vital

NASA has one more Mars mission firmly on the books beyond MSL, an atmosphere-studying orbiter called Maven that's due to launch next year. The agency plans to launch another mission in 2018 or 2020, partly to keep the program vital.

But a Curiosity crash could persuade some talented scientists and engineers that there's not much of a future at Mars, at least not for a while, researchers say.

"If this thing were to fail, I think a lot of people would trickle away and do other things," said Ken Edgett, of Malin Space Science Systems in San Diego. Edgett is principal investigator for Curiosity's Mars Hand Lens Imager instrument, or MAHLI.

He added that a crash might spark discussions within NASA about shifting resources from Mars to other promising destinations, such as Jupiter's moon Europa, which harbors a liquid-water ocean beneath its icy shell.

"I don't like that either-or scenario, but I think that's where we're headed," Edgett told SPACE.com in April.

Mars keeps calling us

Edgett stressed, however, that he didn't think a landing mishap would be the end of the Mars program. Other experts echo that viewpoint, saying that Mars will continue to hold our interest and draw our scientific explorers back.

"It's one of the most scientifically compelling objects in the solar system — perhaps in terms of ease to get to, the most compelling," said Scott Hubbard of Stanford University. "And it's the place, ultimately, for human exploration. So I think Mars exploration will continue."

Hubbard speaks from experience. He's the former "Mars Czar" who restructured NASA's Red Planet program after the agency's Mars Polar Lander and Mars Climate Orbiter both failed in 1999.

Still, success would definitely be preferable for those who care about Red Planet exploration. A strong showing by Curiosity could lead to bigger things down the road at Mars, Hubbard said.

"There's a window, I feel, with a successful mission — particularly if it finds evidence of organics — to give the scientific community even more stimulus and ammunition to ask for a re-look at the budget," Hubbard said.

SPACE.com columnist Leonard David contributed to this story. Visit SPACE.com for complete coverage of NASA's Mars rover landing Sunday. Follow senior writer Mike Wall on Twitter @michaeldwall or SPACE.com @Spacedotcom. We're also on Facebook and Google+.

Copyright 2012 SPACE.com, a TechMediaNetwork company. All rights reserved. This material may not be published, broadcast, rewritten or redistributed.

Related on HuffPost:

Loading Slideshow...
  • Curiosity at Work on Mars

    This artist's concept depicts the rover Curiosity, of NASA's Mars Science Laboratory mission, as it uses its Chemistry and Camera (ChemCam) instrument to investigate the composition of a rock surface. ChemCam fires laser pulses at a target and views the resulting spark with a telescope and spectrometers to identify chemical elements. The laser is actually in an invisible infrared wavelength, but is shown here as visible red light for purposes of illustration.

  • Daybreak At Gale Crater

    This computer-generated view depicts part of Mars at the boundary between darkness and daylight, with an area including Gale Crater beginning to catch morning light.

  • Curiosity Launch Vehicle

    The Atlas V 541 vehicle was selected for the Mars Science Laboratory mission because it has the right liftoff capability for the heavy weight requirements of the rover and its spacecraft.

  • Mars Science Laboratory Spacecraft During Cruise

    This is an artist's concept of NASA's Mars Science Laboratory spacecraft during its cruise phase between launch and final approach to Mars. The spacecraft includes a disc-shaped cruise stage (on the left) attached to the aeroshell. The spacecraft's rover (Curiosity) and descent stage are tucked inside the aeroshell.

  • Curiosity Approaching Mars

    The Curiosity rover is safely tucked inside the spacecraft's aeroshell. The mission's approach phase begins 45 minutes before the spacecraft enters the Martian atmosphere. It lasts until the spacecraft enters the atmosphere.

  • Curiosity Inside Aeroshell

    The Curiosity rover and the spacecraft's descent stage are safely tucked inside the aeroshell at this point. The aeroshell includes a heat shield (on the right, facing in the direction of travel through the atmosphere) and backshell. The diameter of the aeroshell is 14.8 feet (4.5 meters), the largest ever used for a mission to Mars.

  • Mars Science Laboratory Guided Entry At Mars

    The mission's entry, descent, and landing (EDL) phase begins when the spacecraft reaches the top of Martian atmosphere, about 81 miles (131 kilometers) above the surface of the Gale crater landing area, and ends with the rover safe and sound on the surface of Mars. During the approximately seven minutes of EDL, the spacecraft decelerates from a velocity of about 13,200 miles per hour (5,900 meters per second) at the top of the atmosphere, to stationary on the surface.

  • Deceleration of Mars Science Laboratory in Martian Atmosphere

    This artist's concept depicts the interaction of NASA's Mars Science Laboratory spacecraft with the upper atmosphere of Mars during the entry, descent and landing of the Curiosity rover onto the Martian surface.

  • Mars Science Laboratory Parachute

    This is an artist's concept of the Mars Science Laboratory Curiosity rover parachute system.

  • Curiosity While On Parachute

    This is an artist's concept of NASA's Curiosity rover tucked inside the Mars Science Laboratory spacecraft's backshell while the spacecraft is descending on a parachute toward Mars. The parachute is attached to the top of the backshell. In the scene depicted here, the spacecraft's heat shield has already been jettisoned.

  • Curiosity And Descent Stage

    This is an artist's concept of the rover and descent stage for NASA's Mars Science Laboratory spacecraft during the final minute before the rover, Curiosity, touches down on the surface of Mars.

  • Curiosity's Sky Crane Maneuver

    The entry, descent, and landing (EDL) phase of the Mars Science Laboratory mission begins when the spacecraft reaches the Martian atmosphere, about 81 miles (131 kilometers) above the surface of the Gale crater landing area, and ends with the rover Curiosity safe and sound on the surface of Mars.

  • Curiosity Touching Down

    This artist's concept depicts the moment that NASA's Curiosity rover touches down onto the Martian surface.

  • A Moment After Curiosity's Touchdown

    This artist's concept depicts the moment immediately after NASA's Curiosity rover touches down onto the Martian surface.

  • Curiosity Mars Rover

    This artist concept features NASA's Mars Science Laboratory Curiosity rover, a mobile robot for investigating Mars' past or present ability to sustain microbial life.

  • Curiosity's Close-Up

    In this picture, the mast, or rover's "head," rises to about 2.1 meters (6.9 feet) above ground level, about as tall as a basketball player. This mast supports two remote-sensing instruments: the Mast Camera, or "eyes," for stereo color viewing of surrounding terrain and material collected by the arm; and, the ChemCam instrument, which is a laser that vaporizes material from rocks up to about 9 meters (30 feet) away and determines what elements the rocks are made of.

  • Mars Rover Curiosity

    This artist concept features NASA's Mars Science Laboratory Curiosity rover, a mobile robot for investigating Mars' past or present ability to sustain microbial life.