By: Mike Wall
Published: 08/22/2012 06:47 AM EDT on SPACE.com

Taking a 1-ton Mars rover out for a Red Planet spin may be an otherworldly adventure, but it isn't full of heart-pumping action like a video game.

NASA's Mars rover Curiosity is set to make its first test drive Wednesday (Aug. 22), then head out toward a spot called Glenelg in the coming days. Curiosity's drivers will guide the six-wheeled robot on the 1,300-foot (400-meter) trek to Glenelg — not with a joystick, but via commands uploaded on a daily basis.

"The rover may be powered off while we're actually doing our planning, and so we'll have eight or more hours to do our sequencing," said Jeff Biesiadecki of NASA's Jet Propulsion Laboratory in Pasadena, Calif. "Then we'll send up a command load to the rover and tell it step-by-step what it needs to do."

Team of drivers

Biesiadecki is one of 16 drivers for Curiosity, which touched down inside Mars' huge Gale Crater on the night of Aug. 5. The rover is the heart of NASA's $2.5 billion Mars Science Laboratory mission (MSL), which aims to determine if the Red Planet could ever have supported microbial life.

The rover drivers don't just focus on moving Curiosity's wheels, Biesiadecki said. They also operate its 7-foot (2.1-m) robotic arm, which is equipped with a percussive drill and soil-scooping gear, among other tools. And the drivers work to make sure samples snagged by the arm get deposited into the analysis instruments on Curiosity's body. [Latest Mars Photos by Curiosity Rover]

Such activities are generally mapped out a day ahead of time by the rover science team, then written up as code by the drivers.

So Curiosity has its orders when it rises to greet each Martian day, or "sol." The rover team doesn't want to plan things out too far in advance, scientists have said, because priorities can change from sol to sol depending on what Curiosity finds.

Curiosity carries 17 different cameras to help it study and negotiate the Gale Crater terrain. The drivers are particularly interested in photos snapped by Curiosity's four navigation cameras, which sit on its head-like mast.

"We get a stereo view of Mars from those cameras," Biesiadecki told SPACE.com "Those [images] are a key element of helping us decide where we're going to go the next day, and what routes are safe. So basically, after the rover downlinks its imagery, then all our planning takes place."

mars rover drive
This image from NASA's Mars Reconnaissance Orbiter shows the Curiosity rover landing and destinations scientists want to investigate. The rover's first driving target is the region marked by a blue dot that is nicknamed Glenelg.

Some autonomy

While Curiosity is ultimately dependent on its Earth-bound handlers, it does have an autonomous navigation mode that allows it a bit of freedom on the Martian surface.

"The rover is going to be able to choose its own path," Biesiadecki said of this mode. "It will take images as needed to look for obstacles along the way, and drive around them. The disadvantage is that it's much slower for it to do that."

Curiosity's autonomous mode will come in handy when the MSL team wants to send the rover somewhere not covered by the previous day's set of images, Biesiadecki said. But the drivers won't test out this capability right off the bat.

"Our initial drives are going to be in the much more 'do exactly what we tell you to do' mode," Biesiadecki said. "So that will be, 'Drive this many meters; stop, turn this much; take an image; drive this many more meters.'"

NASA officials have called Curiosity the most complex and capable robotic explorer ever sent to another planet. But driving it is similar to operating the Mars Exploration Rovers Spirit and Opportunity, which landed on the Red Planet in January 2004, Biesiadecki said. Opportunity is still roving across the Martian landscape today, more than eight years later.

"We really tried to build on the experience that we had from MER," he said. "We've got the same drive pattern. We have the same engineering cameras onboard, for instance, and so that dictates a lot of how we do our work." [Latest Mars Photos from Spirit and Opportunity]

Taking it slow

Curiosity's first substantial drives will send it toward Glenelg, where three different types of geological terrain come together in one place.

Though Glenelg is just four football fields away, it'll probably take Curiosity a month or more to get there, mission managers have said. That's because Curiosity will take things slow initially, and scientists may want to stop along the way to do some science work.

Curiosity's ultimate destination, however, is the base of Mount Sharp, the 3.4-mile-high (5.5 kilometers) mountain rising from Gale Crater's center. Mars-orbiting spacecraft have spotted evidence of clays and sulfates in Mount Sharp's foothills, suggesting the area was exposed to liquid water long ago.

The interesting Mount Sharp deposits are about 5 miles (8 km) away from Curiosity's landing site as the crow flies, so getting to them will be quite a trek, especially since the rover is not exactly a speed demon. The MSL team hopes Curiosity can eventually cover 330 feet (100 m) or more of Martian ground in a big day of driving.

Biesiadecki and his fellow drivers are eager to get Curiosity headed toward Glenelg, and then on to Mount Sharp.

"For all rover planners, I think I can safely say we're itching to go, and Curiosity's ready to roll," Biesiadecki said.

Follow SPACE.com senior writer Mike Wall on Twitter @michaeldwall or SPACE.com @Spacedotcom. We're also on Facebook and Google+.

Copyright 2012 SPACE.com, a TechMediaNetwork company. All rights reserved. This material may not be published, broadcast, rewritten or redistributed.

Related on HuffPost:

Loading Slideshow...
  • Curiosity at Work on Mars

    This artist's concept depicts the rover Curiosity, of NASA's Mars Science Laboratory mission, as it uses its Chemistry and Camera (ChemCam) instrument to investigate the composition of a rock surface. ChemCam fires laser pulses at a target and views the resulting spark with a telescope and spectrometers to identify chemical elements. The laser is actually in an invisible infrared wavelength, but is shown here as visible red light for purposes of illustration.

  • Daybreak At Gale Crater

    This computer-generated view depicts part of Mars at the boundary between darkness and daylight, with an area including Gale Crater beginning to catch morning light.

  • Curiosity Launch Vehicle

    The Atlas V 541 vehicle was selected for the Mars Science Laboratory mission because it has the right liftoff capability for the heavy weight requirements of the rover and its spacecraft.

  • Mars Science Laboratory Spacecraft During Cruise

    This is an artist's concept of NASA's Mars Science Laboratory spacecraft during its cruise phase between launch and final approach to Mars. The spacecraft includes a disc-shaped cruise stage (on the left) attached to the aeroshell. The spacecraft's rover (Curiosity) and descent stage are tucked inside the aeroshell.

  • Curiosity Approaching Mars

    The Curiosity rover is safely tucked inside the spacecraft's aeroshell. The mission's approach phase begins 45 minutes before the spacecraft enters the Martian atmosphere. It lasts until the spacecraft enters the atmosphere.

  • Curiosity Inside Aeroshell

    The Curiosity rover and the spacecraft's descent stage are safely tucked inside the aeroshell at this point. The aeroshell includes a heat shield (on the right, facing in the direction of travel through the atmosphere) and backshell. The diameter of the aeroshell is 14.8 feet (4.5 meters), the largest ever used for a mission to Mars.

  • Mars Science Laboratory Guided Entry At Mars

    The mission's entry, descent, and landing (EDL) phase begins when the spacecraft reaches the top of Martian atmosphere, about 81 miles (131 kilometers) above the surface of the Gale crater landing area, and ends with the rover safe and sound on the surface of Mars. During the approximately seven minutes of EDL, the spacecraft decelerates from a velocity of about 13,200 miles per hour (5,900 meters per second) at the top of the atmosphere, to stationary on the surface.

  • Deceleration of Mars Science Laboratory in Martian Atmosphere

    This artist's concept depicts the interaction of NASA's Mars Science Laboratory spacecraft with the upper atmosphere of Mars during the entry, descent and landing of the Curiosity rover onto the Martian surface.

  • Mars Science Laboratory Parachute

    This is an artist's concept of the Mars Science Laboratory Curiosity rover parachute system.

  • Curiosity While On Parachute

    This is an artist's concept of NASA's Curiosity rover tucked inside the Mars Science Laboratory spacecraft's backshell while the spacecraft is descending on a parachute toward Mars. The parachute is attached to the top of the backshell. In the scene depicted here, the spacecraft's heat shield has already been jettisoned.

  • Curiosity And Descent Stage

    This is an artist's concept of the rover and descent stage for NASA's Mars Science Laboratory spacecraft during the final minute before the rover, Curiosity, touches down on the surface of Mars.

  • Curiosity's Sky Crane Maneuver

    The entry, descent, and landing (EDL) phase of the Mars Science Laboratory mission begins when the spacecraft reaches the Martian atmosphere, about 81 miles (131 kilometers) above the surface of the Gale crater landing area, and ends with the rover Curiosity safe and sound on the surface of Mars.

  • Curiosity Touching Down

    This artist's concept depicts the moment that NASA's Curiosity rover touches down onto the Martian surface.

  • A Moment After Curiosity's Touchdown

    This artist's concept depicts the moment immediately after NASA's Curiosity rover touches down onto the Martian surface.

  • Curiosity Mars Rover

    This artist concept features NASA's Mars Science Laboratory Curiosity rover, a mobile robot for investigating Mars' past or present ability to sustain microbial life.

  • Curiosity's Close-Up

    In this picture, the mast, or rover's "head," rises to about 2.1 meters (6.9 feet) above ground level, about as tall as a basketball player. This mast supports two remote-sensing instruments: the Mast Camera, or "eyes," for stereo color viewing of surrounding terrain and material collected by the arm; and, the ChemCam instrument, which is a laser that vaporizes material from rocks up to about 9 meters (30 feet) away and determines what elements the rocks are made of.

  • Mars Rover Curiosity

    This artist concept features NASA's Mars Science Laboratory Curiosity rover, a mobile robot for investigating Mars' past or present ability to sustain microbial life.