NEW YORK — Scientists in Oregon have created embryos with genes from one man and two women, using a provocative technique that could someday be used to prevent babies from inheriting certain rare incurable diseases.

The researchers at Oregon Health & Sciences University said they are not using the embryos to produce children, and it is not clear when or even if this technique will be put to use. But it has already stirred a debate over its risks and ethics in Britain, where scientists did similar work a few years ago.

The British experiments, reported in 2008, led to headlines about the possibility someday of babies with three parents. But that's an overstatement. The DNA from the second woman amounts to less than 1 percent of the embryo's genes, and it isn't the sort that makes a child look like Mom or Dad. The procedure is simply a way of replacing some defective genes that sabotage the normal workings of cells.

The British government is asking for public comment on the technology before it decides whether to allow its use in the future. One concern it cites is whether such DNA alteration could be an early step down a slippery slope toward "designer babies" – ordering up, say, a petite, blue-eyed girl or tall, dark-haired boy.

Questions have also arisen about the safety of the technique, not only for the baby who results from the egg, but also for the child's descendants.

In June, an influential British bioethics group concluded that the technology would be ethical to use if proven safe and effective. An expert panel in Britain said in 2011 that there was no evidence the technology was unsafe but urged further study.

Laurie Zoloth, a bioethicist at Northwestern University in Evanston, Ill., said in an interview that safety problems might not show up for several generations. She said she hopes the United States will follow Britain's lead in having a wide-ranging discussion of the technology.

While the kind of diseases it seeks to fight can be terrible, "this might not be the best way to address it," Zoloth said.

Over the past few years, scientists have reported that such experiments produced healthy monkeys and that tests in human eggs showed encouraging results. The Oregon scientists reported Wednesday that they have produced about a dozen early human embryos and found the technique is highly effective in replacing DNA.

The genes they want to replace aren't the kind most people think of, which are found in the nucleus of cells and influence traits such as eye color and height. Rather, these genes reside outside the nucleus in energy-producing structures called mitochondria. These genes are passed along only by mothers, not fathers.

About 1 in every 5,000 children inherits a disease caused by defective mitochondrial genes. The defects can cause many rare diseases with a host of symptoms, including strokes, epilepsy, dementia, blindness, deafness, kidney failure and heart disease.

The new technique, if approved someday for routine use, would allow a woman to give birth to a baby who inherits her nucleus DNA but not her mitochondrial DNA. Here's how it would work:

Doctors would need unfertilized eggs from the patient and a healthy donor. They would remove the nucleus DNA from the donor eggs and replace it with nucleus DNA from the patient's eggs. So, they would end up with eggs that have the prospective mother's nucleus DNA, but the donor's healthy mitochondrial DNA.

In a report published online Wednesday by the journal Nature, Shoukhrat Mitalipov and others at OHSU report transplanting nucleus DNA into 64 unfertilized eggs from healthy donors. After fertilization, 13 eggs showed normal development and went on to form early embryos.

The researchers also reported that four monkeys born in 2009 from eggs that had DNA transplants remain healthy, giving some assurance on safety.

Mitalipov said in an interview that the researchers hope to get federal approval to test the procedure in women, but that current restrictions on using federal money on human embryo research stand in the way of such studies.

The research was funded by the university and the Leducq Foundation in Paris.

Dr. Douglass Turnbull of Newcastle University in Britain, whose team has transplanted DNA between eggs using a different technique, called the new research "very important and encouraging" in showing that such transplants could work.

But "clearly, safety is an issue" with either technique if it is applied to humans, he said.

___

Online:

Journal Nature: http://www.nature.com/nature

Mitochondrial diseases: http://www.umdf.org

British ethics group: http://www.nuffieldbioethics.org/mitochondrial-dna-disorders

British government project: http://mitochondria.hfea.gov.uk/mitochondria/

Also on HuffPost:

Loading Slideshow...
  • Glow-in-the-dark cats

    In 2007, South Korean scientists altered a cat’s DNA to make it glow in the dark and then took that DNA and cloned other cats from it — creating a set of fluffy, <a href="http://www.theguardian.com/science/2011/sep/11/genetically-modified-glowing-cats" target="_blank">fluorescent felines</a>. Here’s how they did it: The researchers took skin cells from Turkish Angora female cats and used a virus to insert genetic instructions for making red fluorescent protein. Then they put the gene-altered nuclei into the eggs for cloning, and the cloned embryos were implanted back into the donor cats — making the cats the surrogate mothers for their own clones. What’s the point of creating a pet that doubles as a nightlight? Scientists say the ability to engineer animals with fluorescent proteins will enable them to artificially create animals with human genetic diseases.

  • Enviropig

    The <a href="http://news.nationalgeographic.com/news/2010/03/100330-bacon-pigs-enviropig-dead-http://news.nationalgeographic.com/news/2010/03/100330-bacon-pigs-enviropig-dead-zones/" target="_hplink">Enviropig</a>, or “Frankenswine,” as critics call it, is a pig that’s been genetically altered to better digest and process phosphorus. Pig manure is high in phytate, a form of phosphorus, so when farmers use the manure as fertilizer, the chemical enters the watershed and causes algae blooms that deplete oxygen in the water and kill marine life. So scientists added an E. Coli bacteria and mouse DNA to a pig embryo. This modification decreases a pig’s phosphorous output by as much as 70 percent — making the pig more environmentally friendly.

  • Pollution-fighting plants

    Scientists at the University of <a href="http://www.mnn.com/local-reports/washington" target="_hplink">Washington</a> are <a href="http://wa.water.usgs.gov/pubs/fs/fs082-98/" target="_hplink">engineering poplar trees that can clean up contamination sites</a> by absorbing groundwater pollutants through their roots. The plants then break the pollutants down into harmless byproducts that are incorporated into their roots, stems and leaves or released into the air. In laboratory tests, the transgenic plants are able to remove as much as 91 percent of trichloroethylene — the most common groundwater contaminant at U.S. Superfund sites — out of a liquid solution. Regular poplar plants removed just 3 percent of the contaminant.

  • Venomous cabbage

    Scientists have recently taken the gene that programs poison in scorpion tails and combined it with cabbage. Why would they want to create <a href="http://www.nature.com/cr/journal/v12/n2/full/7290120a.html" target="_hplink">venomous cabbage</a>? To limit pesticide use while still preventing caterpillars from damaging cabbage crops. These genetically modified cabbages produce scorpion poison that kills caterpillars when they bite leaves — but the toxin is modified so it isn’t harmful to humans.

  • Web-spinning goats

    Strong, flexible spider silk is one of the most valuable materials in nature, and it could be used to make an array of products — from artificial ligaments to parachute cords — if we could just produce it on a commercial scale. In 2000, Nexia Biotechnologies announced it had the answer: <a href="http://www.physorg.com/news194539934.html" target="_hplink">a goat that produced spiders’ web protein</a> in its milk. Researchers inserted a spiders’ dragline silk gene into the goats’ DNA in such a way that the goats would make the silk protein only in their milk. This “silk milk” could then be used to manufacture a web-like material called Biosteel.

  • Fast-growing salmon

    AquaBounty’s genetically modified salmon grows twice as fast as the conventional variety — the photo shows two same-age salmon with the genetically altered one in the rear. The company says the fish has the same flavor, texture, color and odor as a regular salmon; however, the debate continues over whether the fish is safe to eat. <a href="http://www.aquabounty.com/products/products-295.aspx" target="_hplink">Genetically engineered Atlantic salmon</a> has an added growth hormone from a Chinook salmon that allows the fish to produce growth hormone year-round. Scientists were able to keep the hormone active by using a gene from an eel-like fish called an ocean pout, which acts as an “on switch” for the hormone. If the FDA approves the sale of the salmon, it will be the first time the government has allowed modified animals to be marketed for human consumption. According to federal guidelines, the fish would not have to be labeled as genetically modified.

  • Flavr Savr tomato

    The <a href="http://californiaagriculture.ucanr.org/landingpage.cfm?article=ca.v054n04p6&fulltext=yes" target="_hplink">Flavr Savr tomato</a> was the first commercially grown genetically engineered food to be granted a license for human consumption. By adding an antisense gene, the <a href="http://www.mnn.com/local-reports/california" target="_hplink">California</a>-based company Calgene hoped to slow the ripening process of the tomato to prevent softening and rotting, while allowing the tomato to retain its natural flavor and color. The FDA approved the Flavr Savr in 1994; however, the tomatoes were so delicate that they were difficult to transport, and they were off the market by 1997. On top of production and shipping problems, the tomatoes were also reported to have a very bland taste: “The Flavr Savr tomatoes didn’t taste that good because of the variety from which they were developed. There was very little flavor to save,” said Christ Watkins, a horticulture professor at Cornell University.

  • <a href="http://www.mnn.com/green-tech/research-innovations/photos/12-bizarre-examples-of-genetic-engineering/banana-vaccines" target="_hplink"><strong>CLICK HERE</strong></a> to continue on to <a href="http://www.mnn.com" target="_hplink">Mother Nature Network</a> to see the rest of these bizarre genetically engineered creations, including <a href="http://www.mnn.com/green-tech/research-innovations/photos/12-bizarre-examples-of-genetic-engineering/banana-vaccines" target="_hplink">banana vaccines</a>, <a href="http://www.mnn.com/green-tech/research-innovations/photos/12-bizarre-examples-of-genetic-engineering/less-flatulent-cow" target="_hplink">less-flatulent cows</a>, <a href="http://www.mnn.com/green-tech/research-innovations/photos/12-bizarre-examples-of-genetic-engineering/medicinal-eggs" target="_hplink">medicinal eggs</a> and more!