iOS app Android app More

Rogue Planet 'Nomads' May Outnumber Stars In Milky Way

First Posted: 02/26/2012 10:30 am Updated: 02/26/2012 1:12 pm

Nomad Planet
An artistic rendition of a nomad object wandering through the interstellar medium. The object is intentionally blurry to represent uncertainty about whether it has an atmosphere.

By: SPACE.com Staff
Published: 02/24/2012 11:44 AM EST on SPACE.com

Our Milky Way galaxy may be teeming with rogue planets that ramble through space instead of being locked in orbit around a star, a new study suggests.

These "nomad planets" could be surprisingly common in our bustling galaxy, according to researchers at the Kavli Institute for Particle Astrophysics and Cosmology (KIPAC), a joint institute of Stanford University and the SLAC National Accelerator Laboratory. The study predicts that there may be 100,000 times more of these wandering, homeless planets than stars in the Milky Way.

If this is the case, these intriguing cosmic bodies would belong to a whole new class of alien worlds, shaking up existing theories of planet formation. These free-flying planets may also raise new and tantalizing questions in the search for life beyond Earth.

"If any of these nomad planets are big enough to have a thick atmosphere, they could have trapped enough heat for bacterial life to exist," study leader Louis Strigari said in a statement.

And while nomad planets cannot benefit from the heat given off from their parent stars, these worlds could generate heat from tectonic activity or internal radioactive decay, the researchers said.

For now, characteristics of these foreign objects are still unknown; they could be icy bodies, similar to other objects found in the outer solar system, rocky like asteroids, or gas giants similar to the most massive planets in our solar system. [Gallery: First Earth-Size Alien Planets Found]

Over the past several decades, astronomers have keenly hunted for planets outside our solar system. So far, the search has turned up more than 700 of these exoplanets. Almost all of these newfound worlds orbit stars, but last year, scientists found about a dozen planets with no discernible host star.

The researchers used a technique called gravitational microlensing to detect these homeless planets. This method examines the effects of a massive object passing in front of a star.

From Earth, the nearby object bends and magnifies the light from the distant star like a lens, making the faraway star's light appear to brighten and fade over time. The resulting "light curve" helps astronomers distinguish characteristics of the foreground object.

Based on initial estimates, approximately two free-flying planets exist for every "normal" star in our galaxy, but the results of the new study produced even more staggering findings: nomad planets may be up to 50,000 times more common than that.

"To paraphrase Dorothy from 'The Wizard of Oz,' if correct, this extrapolation implies that we are not in Kansas anymore, and in fact we never were in Kansas," Alan Boss, of the Carnegie Institution for Science in Washington, D.C., said in a statement. "The universe is riddled with unseen planetary-mass objects that we are just now able to detect."

The KIPAC researchers made their prediction by calculating the known gravitational pull of the Milky Way, the amount of matter available in the galaxy to make such celestial objects, and how that matter might be distributed to make up objects that range from as small as Pluto to as large as Jupiter.

These measurements were challenging since astronomers are unsure where these wandering planets came from, the researchers said. Some of these rogue worlds were likely ejected from other star systems, but there is evidence that not all of them could have been formed this way, Strigari said.

The researchers are hopeful that follow-up observations using next generation telescopes, particularly of the smaller objects, will yield more detailed results. The planned space-based Wide Field Infrared Survey Telescope, and the Large Synoptic Survey Telescope on the ground, are both set to begin operations in the early 2020s.

If the estimated number of these nomad planets is correct, the results could lead to exciting prospects about the origin and abundance of life in our Milky Way galaxy. For instance, as these homeless planets mosey through space, collisions could break apart pieces of these rogue worlds and fling bacterial life onto other celestial bodies, the researchers said.

"Few areas of science have excited as much popular and professional interest in recent times as the prevalence of life in the universe," study co-author Roger Blandford, director of KIPAC, said in a statement. "What is wonderful is that we can now start to address this question quantitatively by seeking more of these erstwhile planets and asteroids wandering through interstellar space, and then speculate about hitchhiking bugs."

Details of the study are published in the Monthly Notices of the Royal Astronomical Society.

Follow SPACE.com for the latest in space science and exploration news on Twitter @Spacedotcom and on Facebook.

Copyright 2012 SPACE.com, a TechMediaNetwork company. All rights reserved. This material may not be published, broadcast, rewritten or redistributed. Keep clicking for more artists' conceptions of exoplanets, planets outside our solar system.
Loading Slideshow...
  • NASA's Kepler Mission Discovers Planet

    In this handout illustration made available on December 5, 2011 by NASA, the Kepler-22b, a planet known to comfortably circle in the habitable zone of a sun-like star is digitally illustrated. For the first time NASA's Kepler mission has confirmed a planet to orbit in a star's habitable zone; the region around a star, where liquid water, a requirement for life on Earth, could persist. The planet is 2.4 times the size of Earth, making it the smallest yet found to orbit in the middle of the habit. Clouds could exist in this earth's atmosphere, as the artist's interpretive illustration depicts. (Photo Illustration by Ames/JPL-Caltech/NASA via Getty Images)

  • NASA's Kepler Mission Discovers Planet

    In this handout illustration made available on December 5, 2011 by NASA, a diagram compares our own solar system to Kepler-22, a star system containing the first 'habitable zone' planet discovered by NASA's Kepler mission. The habitable zone is the sweet spot around a star where temperatures are right for water to exist in its liquid form. Liquid water is essential for life on Earth. The diagram displays an artist's rendering of the planet comfortably orbiting within the habitable zone, similar to where Earth circles the sun. Kepler-22b has a yearly orbit of 289 days. The planet is the smallest known to orbit in the middle of the habitable zone of a sun-like star and is about 2.4 times the size of Earth. (Photo Illustration by Ames/JPL-Caltech/NASA via Getty Images)

  • Extrasolar Planet HD 209458 b, Osiris

    Artist's conception released by NASA of extrasolar planet HD 209458 b, also known as Osiris, orbiting its star in the constellation Pegasus, some 150 light years from Earth's solar system. Scientists have used an infrared spectrum -- the first ever obtained for an extrasolar planet -- to analyze Osiris' atmosphere, which is said to contain dust but no water. The planet's surface temperature is more than 700 Celsius (1330 Fahrenheit).'

  • Planet & Its Parent Star

    Picture released 04 October 2006 by the European Space Agency shows an artist's impression of a Jupiter-sized planet passing in front of its parent star. Such events are called transits. When the planet transits the star, the star's apparent brightness drops by a few percent for a short period. Through this technique, astronomers can use the Hubble Space Telescope to search for planets across the galaxy by measuring periodic changes in a star's luminosity. The first class of exoplanets found by this technique are the so-called 'hot Jupiters,' which are so close to their stars they complete an orbit within days, or even hours. A seam of stars at the centre of the Milky Way has shown astronomers that an entirely new class of planets closely orbiting distant suns is waiting to be explored, according to a paper published 04 October 2006. An international team of astronomers, using a camera aboard NASA's Hubble telescope, delved into a zone of the Milky Way known as the 'galactic bulge', thus called because it is rich in stars and in the gas and dust which go to make up stars and planets. The finding opens up a new area of investigation for space scientists probing extrasolar planets - planets that orbit stars other than our own. AFP PHOTO NASA/ESA/K. SAHU (STScI) AND THE SWEEPS SCIENCE TEAM

  • Hot Jupiter

    Picture released 04 October 2006 by the European Space Agency shows an artist's impression of a unique type of exoplanet discovered with the Hubble Space Telescope. This image presents a purely speculative view of what such a 'hot Jupiter' (word dedicated to planets so close to their stars with such short orbital periods) might look like. A seam of stars at the centre of the Milky Way has shown astronomers that an entirely new class of planets closely orbiting distant suns is waiting to be explored, according to a paper published 04 October 2006. An international team of astronomers, using a camera aboard NASA's Hubble telescope, delved into a zone of the Milky Way known as the 'galactic bulge', thus called because it is rich in stars and in the gas and dust which go to make up stars and planets. The finding opens up a new area of investigation for space scientists probing extrasolar planets - planets that orbit stars other than our own. AFP PHOTO NASA/ESA/K. SAHU (STScI) AND THE SWEEPS SCIENCE TEAM

  • The Goldilocks Planet: Glises 581 G

    Scientist have found a new potentially habitable planet.

  • Imagining Extrasolar Planets

    From the Spitzer Science Center. While astronomers have identified over 500 planets around other stars, they're all too small and distant to fill even a single pixel in our most powerful telescopes. That's why science must rely on art to help us imagine these strange new worlds. From Spitzer Space Telescope. Even without pictures of these exoplanets, astronomers have learned many things that can be illustrated in artwork. For instance, measurements of the temperatures of many "Hot Jupiters," massive worlds orbiting very close to their stars, hint that their atmospheres may be as dark as soot, glowing only from their own heat. While "Hot Jupiters" would be relatively dark in visible light, compared to their stars, their brightness is proportionally much greater in the infrared. Illustrating this dramatic contrast change helps explain why the infrared eye of NASA's Spitzer Space Telescope plays a key role in studying exoplanets. As our understanding evolves, so must the artwork. Astronomers found a blazing hot spot on the exoplanet Upsilon Andromedae b that at first, appeared to face towards its star. More data has revealed that the hottest area is actually strangely rotated almost 90 degrees away, near the day/night terminator. WASP 12b is as hot as the filament in a light bulb, and would be blazing bright to our eyes. Most interestingly, if it proves to have a strongly elliptical orbit, as first thought, calculations show it would be shedding some of its outer atmosphere <b>...</b>

FOLLOW HUFFPOST SCIENCE

Filed by Travis Korte  |