"Future pups from the past." That's what Edgar and Nina Otto, the proud owners of a cloned Labrador retriever, Lancelot Encore, have dubbed his offspring. Lancelot Encore is the clone of Sir Lancelot, the West Boca, Fla. couple's family dog that died four years ago.

Now the Ottos have not only a Sir Lancelot replica, but also eight puppies. The little ones were born July 4, after Lancelot Encore was bred with a female Lab named Scarlett, the Sun Sentinel reported.

Not long ago, pet cloning was science fiction. That's no longer the case--though there are at least a couple of reasons why it's not done very often.

"It is very expensive, so most people cannot afford cloning their cats or dogs," cloning expert Dr. Konrad Hochedlinger, professor of regenerative biology at Harvard Medical School, told The Huffington Post in an email. "Besides, most people probably don't want to."

He said the risk with cloning is that the animal produced might not survive birth or could develop abnormalities later in life, such as obesity or sometimes cancer.

While pet cloning remains controversial, Hochedlinger told The Huffington Post that it's more common to clone farm animals--such as cows and pigs--with desired traits. As animal cloning slowly goes mainstream, some scientists speculate this could open the door to human cloning.

Is human cloning really possible?

"In principle, cloning should also work in humans," Dr. Hochedlinger said. "However, attempts to generate cloned blastocysts (a very early stage of human development before implantation) has so far been challenging. So, human cloning faces, as of yet, unidentified barriers compared with animal cloning."

In simple terms, cloning involves taking DNA from the cell of an adult and inserting it into an egg cell harvested from a female. The resulting embryo is implanted in either the female or a surrogate to give birth.

With pet cloning, the aim is for the embryo to become a genetic copy of the previous pet. But a genetic copy isn't the same thing as the original.

"You're not really getting your dog come back to life," John Woestendiek, journalist and author of "Dog, Inc.," told ABC News. "You're getting a genetic duplicate or twin, and we know how different twins can be. I mean, what's special about your dog, that's the part that can't be cloned. In effect, the person who is getting a dog clone is paying $100,000 to get a blank canvas."

But for the Ottos (who were featured on TLC's "I Cloned My Pet"): "Lancey Encore the clone has the same behavior, the same movements and has all of the same traits of his predecessor," they wrote on their website. "That part we did not expect. Lancelot, our prince charming, had finally come home."

What do you think about pet cloning? Tell us in the comments below.

Also on HuffPost:

GALLERY: MOST BIZARRE GENETICALLY ENGINEERED PLANTS AND ANIMALS

Loading Slideshow...
  • Glow-in-the-dark cats

    In 2007, South Korean scientists altered a cat’s DNA to make it glow in the dark and then took that DNA and cloned other cats from it — creating a set of fluffy, <a href="http://cosmiclog.msnbc.msn.com/_news/2007/12/13/4349719-cloned-cats-that-glow" target="_hplink">fluorescent felines</a>. Here’s how they did it: The researchers took skin cells from Turkish Angora female cats and used a virus to insert genetic instructions for making red fluorescent protein. Then they put the gene-altered nuclei into the eggs for cloning, and the cloned embryos were implanted back into the donor cats — making the cats the surrogate mothers for their own clones. What’s the point of creating a pet that doubles as a nightlight? Scientists say the ability to engineer animals with fluorescent proteins will enable them to artificially create animals with human genetic diseases.

  • Enviropig

    The <a href="http://news.nationalgeographic.com/news/2010/03/100330-bacon-pigs-enviropig-dead-http://news.nationalgeographic.com/news/2010/03/100330-bacon-pigs-enviropig-dead-zones/" target="_hplink">Enviropig</a>, or “Frankenswine,” as critics call it, is a pig that’s been genetically altered to better digest and process phosphorus. Pig manure is high in phytate, a form of phosphorus, so when farmers use the manure as fertilizer, the chemical enters the watershed and causes algae blooms that deplete oxygen in the water and kill marine life. So scientists added an E. Coli bacteria and mouse DNA to a pig embryo. This modification decreases a pig’s phosphorous output by as much as 70 percent — making the pig more environmentally friendly.

  • Pollution-fighting plants

    Scientists at the University of <a href="http://www.mnn.com/local-reports/washington" target="_hplink">Washington</a> are <a href="http://wa.water.usgs.gov/pubs/fs/fs082-98/" target="_hplink">engineering poplar trees that can clean up contamination sites</a> by absorbing groundwater pollutants through their roots. The plants then break the pollutants down into harmless byproducts that are incorporated into their roots, stems and leaves or released into the air. In laboratory tests, the transgenic plants are able to remove as much as 91 percent of trichloroethylene — the most common groundwater contaminant at U.S. Superfund sites — out of a liquid solution. Regular poplar plants removed just 3 percent of the contaminant.

  • Venomous cabbage

    Scientists have recently taken the gene that programs poison in scorpion tails and combined it with cabbage. Why would they want to create <a href="http://www.nature.com/cr/journal/v12/n2/full/7290120a.html" target="_hplink">venomous cabbage</a>? To limit pesticide use while still preventing caterpillars from damaging cabbage crops. These genetically modified cabbages produce scorpion poison that kills caterpillars when they bite leaves — but the toxin is modified so it isn’t harmful to humans.

  • Web-spinning goats

    Strong, flexible spider silk is one of the most valuable materials in nature, and it could be used to make an array of products — from artificial ligaments to parachute cords — if we could just produce it on a commercial scale. In 2000, Nexia Biotechnologies announced it had the answer: <a href="http://www.physorg.com/news194539934.html" target="_hplink">a goat that produced spiders’ web protein</a> in its milk. Researchers inserted a spiders’ dragline silk gene into the goats’ DNA in such a way that the goats would make the silk protein only in their milk. This “silk milk” could then be used to manufacture a web-like material called Biosteel.

  • Fast-growing salmon

    AquaBounty’s genetically modified salmon grows twice as fast as the conventional variety — the photo shows two same-age salmon with the genetically altered one in the rear. The company says the fish has the same flavor, texture, color and odor as a regular salmon; however, the debate continues over whether the fish is safe to eat. <a href="http://www.aquabounty.com/products/products-295.aspx" target="_hplink">Genetically engineered Atlantic salmon</a> has an added growth hormone from a Chinook salmon that allows the fish to produce growth hormone year-round. Scientists were able to keep the hormone active by using a gene from an eel-like fish called an ocean pout, which acts as an “on switch” for the hormone. If the FDA approves the sale of the salmon, it will be the first time the government has allowed modified animals to be marketed for human consumption. According to federal guidelines, the fish would not have to be labeled as genetically modified.

  • Flavr Savr tomato

    The <a href="http://californiaagriculture.ucanr.org/landingpage.cfm?article=ca.v054n04p6&fulltext=yes" target="_hplink">Flavr Savr tomato</a> was the first commercially grown genetically engineered food to be granted a license for human consumption. By adding an antisense gene, the <a href="http://www.mnn.com/local-reports/california" target="_hplink">California</a>-based company Calgene hoped to slow the ripening process of the tomato to prevent softening and rotting, while allowing the tomato to retain its natural flavor and color. The FDA approved the Flavr Savr in 1994; however, the tomatoes were so delicate that they were difficult to transport, and they were off the market by 1997. On top of production and shipping problems, the tomatoes were also reported to have a very bland taste: “The Flavr Savr tomatoes didn’t taste that good because of the variety from which they were developed. There was very little flavor to save,” said Christ Watkins, a horticulture professor at Cornell University.

  • <a href="http://www.mnn.com/green-tech/research-innovations/photos/12-bizarre-examples-of-genetic-engineering/banana-vaccines" target="_hplink"><strong>CLICK HERE</strong></a> to continue on to <a href="http://www.mnn.com" target="_hplink">Mother Nature Network</a> to see the rest of these bizarre genetically engineered creations, including <a href="http://www.mnn.com/green-tech/research-innovations/photos/12-bizarre-examples-of-genetic-engineering/banana-vaccines" target="_hplink">banana vaccines</a>, <a href="http://www.mnn.com/green-tech/research-innovations/photos/12-bizarre-examples-of-genetic-engineering/less-flatulent-cow" target="_hplink">less-flatulent cows</a>, <a href="http://www.mnn.com/green-tech/research-innovations/photos/12-bizarre-examples-of-genetic-engineering/medicinal-eggs" target="_hplink">medicinal eggs</a> and more!