01/09/2009 05:36 pm ET Updated May 25, 2011

Change. Obama Can Change the Path of Climate Change


Climate Change. That is change that we don't want to believe we face, that many refuse to face, but it is change that is occurring, driving many through the stages from denial to determination.

In the face of Climate Change, how much Change can Barack Obama deliver?

And, in fact, does he and the building team for the next administration recognize the extent of the necessary Change? Change to the Planet? And, that there might exist geoengineering solutions as part of the path toward necessary Change?

Setting the stage

While America's news cycles are focused on how Americans' 401(k)s are transitioning to 101(k)s, the growing numbers of unemployed (but, sadly, not enough about the faces and stories and realities of those millions creating the statistics), poor store sales, and a dog stuck in a tunnel, planetary news bulletins are becoming ever more worrisome, too frequently suggesting that we need to reset our thinking with analysis showing another 'tipping point' having passed. We have climate change, we are living it. It is hard to understand how to define "catastrophic" when there are already species going extinct, communities having to be moved, and the very existence of nations threatened. But, the crossing of tipping points is redefining "catastrophic" on, virtually, a daily basis.

Let us be clear. We have exactly as time as required to avert utter catastrophe, as long as we start today. With each minute of the Bush administration, "utter catastrophe" was redefined in worse terms with each passing day, as we have failed to confront global warming directly and make even a shadow of necessary Change.

We, however, face a Change to the dynamic.

Come 20 January, we will have a president to believe in in the Oval Office, a president who has committed to taking serious action to Change our reckless path into catastrophic climate change.

Not in the public agenda, however, are concepts for geo-engineering, to seek to shape the planet to redefine 'catastrophe' to something less disastrous. With the ever-more concerning (terrifying) news from the scientific community, we might not have a choice other than to embark on some form of geo-engineering.

About geo-engineering

In the face of the potential for catastrophic climate change and global warming, "geo-engineering" is an arena getting a little attention and some press, such as W Broad, NYT Times

Geoengineering is the deliberate modification of Earth's environment on a large scale "to suit human needs and promote habitability".

One can argue that all efforts to control carbon emissions (to reverse past emissions) falls within GeoEngineering, but that is not the general context of consideration, which often focuses on efforts that would, somehow, have a direct impact on Earth's temperatures (and not, necessarily, on carbon loads).

One step back question, which does not necessarily seem to occur in many conversations, is what principles should guide Geo-Engineering efforts and prioritization of their potential.

Some thoughts as to _Principles_

The core principle should be: win-win-win.

A proposal that, in a systems of systems effort, provides multiple wins and does not solely address temperature.

Thus, a proposal that offers real potential for improving economy, reducing carbon, and contributing to reduced temperature (both directly, somehow, and indirectly through reduced carbon loads or carbon capture) would seem to merit greater prioritization than high-cost efforts that would solely impact "temperature" but not impact (or worsen) the carbon load equation.

Risk factors must be placed into the equation.

  • How "known" are the system-of-system implications?
  • Does it create other problems while "solving" (or ameliorating or delaying) temperature challenges?
  • And, can the response be done quickly, affordable, and in a distributed fashion?

These seem to be some questions that can be asked to see whether 'win-win-win' is possible.

Looking at Geo-Engineering options: Five "traditional" proposals

Wikipedia provides five examples of GeoEngineering
  • Mirrors in space: proposed by Roger Angel with the purpose to deflect a percentage of solar sunlight into space, using mirrors floating around the earth in orbit.
While each is interesting (even intriguing) in its own way(s), these seem to (across the board) fail the "win-win-win" equation process (although, to be honest, the artificial trees are rather interesting to consider).

The space mirrors would be tremendously (prohibitively) expensive and do nothing about carbon loads (and, potentially, actually worsen them). The Sulphur risks more acid rain for a limited gain in slowing warming trends. The Iron Seeding seems to have limited results in testing and has uncertain long-term prospects. Cloud-Seeding, again, is a net carbon cost (the energy to run the system) with some uncertainty over the impact.

Each of these merits more attention than one summary paragraph can provide, but to summarize: these are not win-win-win strategies.

Do Geo-Engineering Win-Win-Win Spaces Exist?

Okay, I've set out a few ideas on principles, created a challenge. Is it a challenge that can realistically be met? Simply put: yes! Here are several paths to help contribute to dealing with temperature levels that go to a positive space in other arenas.

Reflective Roofing: A typical 'asphalt' shingle/such roof, with a very low albedo factor (reflectivity) absorb substantial amounts of solar radiation through the year. Shifting to a reflective roofing material can send much of that solar radiation back to space. It is also highly cost effective because it can reduce air conditioning loads and increase roof longevity. Some payback analysis suggests that, when compared to 'traditional' roofing, reflective roofs can pay back the added cost in just a few weeks. Now, what about the heat/cooling impact globally?

The Earth has an albedo of 0.29, meaning that it reflects 29 per cent of the sunlight that falls upon it. With an albedo of 0.1, towns absorb more sunlight than the global average. Painting all roofs white could nudge the Earth's albedo from 0.29 towards 0.30. According to a very simple "zero-dimensional" model of the Earth, this would lead to a drop in global temperature of up to 1 °C, almost exactly cancelling out the global warming that has taken place since the start of the industrial revolution. A zero-dimensional model, however, excludes the atmosphere and, crucially, the role of clouds. [But!] It would be interesting to see if more sophisticated models predict a similar magnitude of cooling.

As much as 1 degree centigrade via white roofing! Perhaps it is time to start changing building codes and reflecting some sun back to space.

White roofing could be a Silver BB to slay global warming,

Globally, roofs account for 25% of the surface of most cities, and pavement accounts for about 35%. If all were switched to reflective material in 100 major urban areas, it would offset 44 metric gigatons of greenhouse gases

That is from, I believe, the direct cooling effect. Of course, high-albedo (highly reflective) roofs will lower carbon loads through energy efficiency and reduced roofing replacement requirements in out years. And, another win element: this can be done by almost any organization, any government, any individual ... now. And, they will save money while helping to save the planet's habilitability.

Permaculture: We can reclaim deserts through inexpensive but quite thoughtful practices, reducing the heat loads in these areas, capturing carbon, and fostering economic activity. Don't believe me? Take a few moments to watch this.

Again, permaculture can be used for good effect almost anywhere, at low cost with a high benefit. And, of course, the can be used as a carbon sink. What are we waiting for?

Agrichar / Biochar: Very simply, we have the potential for a carbon-negative fuel that could, over time, also foster improve fertility in soil. Very simply, gasification of biomass can be combined with agricultural practices to create energy, have the waste plowed back into the soil to improve fertility (while reducing fertilizer requirements), and have some of the carbon from each of these cycles captured in the soil.

[T]he great advantage of biochar is the fact that the technique can be applied world-wide on agricultual soils, and even by rural communities in the developing world because it is relatively low tech.

Agrichar could, potentially, make humanity carbon neutral and set the path toward reversing the seemingly inexorable growth in atmospheric CO2 levels.

This is a highly promising arena that is getting attention, but perhaps not enough. For some additional discussion, for example, see: Energize America (also); Biochar: The New Frontier; The pay dirt of El Dorado; International Biochar Initiative; Birth of a New Wedge; Terra Preta for Carbon Reduction;
Potential Carbon Emissions Reductions from Biomass by 2030; Terra Preta Bio-Energy List; and the comments to an earlier version of this post. [Note, for a related approach see Engineer Poet's Going Negative.]

Roaring 40s: Remember the ice cube being dropped in the ocean to solve Global Warming in Futurama? Maybe this wasn't total lunacy. The Roaring 40s in the southern hemisphere have tremendous wind resources, wind resources that are Stranded Wind. Wind farms, perhaps floating wind farms, can be set up in these great winds to make ammonia to be used for fuel (and perhaps hydrogen and perhaps be used to support industrial processes in these areas). The process of making this ammonia will remove heat energy from the oceans and, voila, contribute to ice formation.


Geo-Engineering is staring us in the face. But, we can pursue "Geo-Engineering" along win-win-win paths, such that they will more than 'pay for themselves' while helping to moderate temperature through the decades (centuries) of abnormally high carbon loads in the atmosphere.